skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tan, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  2. We introduce RIPT-VLA, a simple and scalable reinforcement-learning-based interactive post-training paradigm that fine-tunes pretrained Vision-Language-Action (VLA) models using only sparse binary success rewards. Existing VLA training pipelines rely heavily on offline expert demonstration data and supervised imitation, limiting their ability to adapt to new tasks and environments under low-data regimes. RIPT-VLA addresses this by enabling interactive post-training with a stable policy optimization algorithm based on dynamic rollout sampling and leave-one-out advantage estimation. RIPT-VLA has the following characteristics. First, it applies to various VLA models, resulting in an improvement on the lightweight QueST model by 21.2%, and the 7B OpenVLA-OFT model to an unprecedented 97.5% success rate. Second, it is computationally efficient and data-efficient: with only one demonstration, RIPT-VLA enables an unworkable SFT model (4%) to succeed with a 97% success rate within 15 iterations. Furthermore, we demonstrate that the policy learned by RIPT-VLA generalizes across different tasks and scenarios and is robust to the initial state context. These results highlight RIPT-VLA as a practical and effective paradigm for post-training VLA models through minimal supervision. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  3. Abstract The physics of recombination lines in the Heisinglet system is expected to be relatively simple, supported by accurate atomic models. We examine the intensities of Heisingletsλ3614, λ3965, λ5016, λ6678, and λ7281 and the triplet Heiλ5876 in various types of ionized nebulae and compare them with theoretical predictions to test the validity of the “Case B” recombination scenario and the assumption of thermal homogeneity. Our analysis includes 85 spectra from Galactic and extragalactic Hiiregions, 90 from star-forming galaxies, and 218 from planetary nebulae, all compiled by the Deep Spectra of Ionized Regions Database Extended (DESIRED-E) project. By evaluating the ratios Heiλ7281/λ6678 and Heiλ7281/λ5876, we determineTe(Hei) and compare it with direct measurements ofTe([Oiii]λ4363/λ5007). We find thatTe(Hei) is systematically lower thanTe([Oiii]) across most objects and nebula types. Additionally, we identify a correlation between the abundance discrepancy factor (ADF(O2+)) and the differenceTe([Oiii]) –Te(Hei) for planetary nebulae. We explore two potential explanations: photon loss fromn1P → 11Stransitions and temperature inhomogeneities. Deviations from “Case B” may indicate photon absorption by Hirather than Heiand/or generalized ionizing photon escape, highlighting the need for detailed consideration of radiative transfer effects. If temperature inhomogeneities are widespread, identifying a common physical phenomenon affecting all ionized nebulae is crucial. Our results suggest that both scenarios can contribute to the observed discrepancies. 
    more » « less
    Free, publicly-accessible full text available June 6, 2026
  4. In this work, we propose a novel approach for the real-time estimation of chip-level spatial power maps for commercial Google Coral M.2 TPU chips based on a machine-learning technique for the first time. The new method can enable the development of more robust runtime power and thermal control schemes to take advantage of spatial power information such as hot spots that are otherwise not available. Different from the existing commercial multi-core processors in which real-time performance-related utilization information is available, the TPU from Google does not have such information. To mitigate this problem, we propose to use features that are related to the workloads of running different deep neural networks (DNN) such as the hyperparameters of DNN and TPU resource information generated by the TPU compiler. The new approach involves the offline acquisition of accurate spatial and temporal temperature maps captured from an external infrared thermal imaging camera under nominal working conditions of a chip. To build the dynamic power density map model, we apply generative adversarial networks (GAN) based on the workload-related features. Our study shows that the estimated total powers match the manufacturer's total power measurements extremely well. Experimental results further show that the predictions of power maps are quite accurate, with the RMSE of only 4.98\rm mW/mm^2, or 2.6\% of the full-scale error. The speed of deploying the proposed approach on an Intel Core i7-10710U is as fast as 6.9ms, which is suitable for real-time estimation. 
    more » « less
  5. Stochastic computing (SC) can lead area-efficient implementation of logic designs. Existing SC multiplication, however, suffers a long-standing problem: large multiplication error with small inputs due to its intrinsic nature of bit-stream based computing. In this article, we propose a new scaled counting-based SC multiplication approach, called {\it Scaled-CBSC}, to mitigate this issue by introducing scaling bits to ensure the bit `1' density of the stochastic number is sufficiently large. The idea is to convert the ``small'' inputs to ``large'' inputs, thus improve the accuracy of SC multiplication. But different from an existing stream-bit based approach, the new method uses the binary format and does not require stochastic addition as the SC multiplication always starts with binary numbers. Furthermore, Scaled-CBSC only requires all the numbers to be larger than 0.5 instead of arbitrary defined threshold, which leads to integer numbers only for the scaling term. The experimental results show that the 8-bit Scaled-CBSC multiplication with 3 scaling bits can achieve up to 46.6\% and 30.4\% improvements in mean error and standard deviation, respectively; reduce the peak relative error from 100\% to 1.8\%; and improve 12.6\%, 51.5\%, 57.6\%, 58.4\% in delay, area, area-delay product, energy consumption, respectively, over the state of art work. 
    more » « less
  6. Abstract Laboratory-derived optical constants are essential for identifying ices and measuring their relative abundances on solar system objects. Almost all optical constants of ices important to planetary science come from experiments with transmission geometries. Here we describe our new experimental setup and the modification of an iterative algorithm in the literature to measure the optical constants of ices from experiments with reflectance geometries. We apply our techniques to CH4ice and H2O ice samples and find good agreement between our values and those in the literature, except for one CH4band in the literature that likely suffers from saturation. The work we present here demonstrates that labs with reflectance geometries can generate optical constants essential for the proper analysis of near- and mid-infrared spectra of outer solar system objects such as those obtained with the James Webb Space Telescope. 
    more » « less
  7. 2.5D chiplet-based technology promises an efficient integration technique for advanced designs with more functionality and higher performance. Temperature and related thermal optimization, heat removal are of critical importance for temperature-aware physical synthesis for chiplets. This paper presents a novel graph convolutional networks (GCN) architecture to estimate the thermal map of the 2.5D chiplet-based systems with the thermal resistance networks built by the compact thermal model (CTM). First, we take the total power of all chiplets as an input feature, which is a global feature. This additional global information can overcome the limitation that the GCN can only extract local information via neighborhood aggregation. Second, inspired by convolutional neural networks (CNN), we add skip connection into the GCN to pass the global feature directly across the hidden layers with the concatenation operation. Third, to consider the edge embedding feature, we propose an edge-based attention mechanism based on the graph attention networks (GAT). Last, with the multiple aggregators and scalers of principle neighborhood aggregation (PNA) networks, we can further improve the modeling capacity of the novel GCN. The experimental results show that the proposed GCN model can achieve an average RMSE of 0.31 K and deliver a 2.6$$\times$$ speedup over the fast steady-state solver of open-source {\it HotSpot} based on SuperLU. More importantly, the GCN model demonstrates more useful generalization or transferable capability. Our results show that the trained GCN can be directly applied to predict thermal maps of six unseen datasets with acceptable mean RMSEs of less than 0.67 K without retraining via inductive learning. 
    more » « less
  8. In this paper, we propose a new spatial temperature aware transient EM induced stress analysis method. The new method consists of two new contributions: First, we propose a new TM-aware void saturation volume estimation method for fast immortality check in the post-voiding phase for the first time. We derive the analytic formula to estimate the void saturation in the presence of spatial temperature gradients due to Joule heating. Second, we developed a fast numerical solution for EM-induced stress analysis for multi-segment interconnect trees considering TM effect. The new method first transforms the coupled EM-TM partial differential equations into linear time-invariant ordinary differential equations (ODEs). Then extended Krylov subspace-based reduction technique is employed to reduce the size of the original system matrices so that they can be efficiently simulated in the time domain. The proposed method can perform the simulation process for both void nucleation and void growth phases under time-varying input currents and position-dependent temperatures. The numerical results show that, compared to the recently proposed semi-analytic EM-TM method, the proposed method can lead to about 28x speedup on average for the interconnect with up to 1000 branches for both void nucleation and growth phases with negligible errors. 
    more » « less